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Abstract
We present ab initio calculations of the longitudinal flexoelectricity for BaTiO3 and SrTiO3

using a direct approach. The calculated value for SrTiO3 agrees with recently reported
measurements. For BaTiO3, however, the theoretical values are smaller than the measured ones;
possible reasons for the discrepancy are discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Inhomogeneous strains can induce dielectric polarization in all
insulators thanks to the so-called flexoelectric effect, which
couples polarization to strain gradient. Flexoelectricity6 was
theoretically described more than 40 years ago by Kogan [2].
Although it is a universal property of all dielectrics, and
not just piezoelectric ones, flexoelectricity is nevertheless a
relatively small effect compared with piezoelectricity, and it
has generally been overlooked until quite recently; it is only
in this decade that the first direct measurements of polarization
induced by bending have been reported [3–6], although it is
worth mentioning that the reverse effect of a strain gradient
(bending) induced by polarization had been measured by
Bursian as far back as 1968 [7].

Interest in flexoelectricity is now growing rapidly due
to the confluence of two factors: (i) because it scales with
dielectric constant [2, 8], it can be large in high permittivity
materials such as ferroelectrics and relaxors, and (ii) because
it is proportional to strain gradient, flexoelectricity can be
huge in the nanoscale, since the same strain relaxed over

6 Throughout this paper we refer only to flexoelectricity as defined for solid
crystals, leaving out the better known flexoelectric effect of liquid crystals [1].

a few nanometers yields a much bigger gradient than if it
were relaxed over a bulk scale. Flexoelectricity due to either
extrinsic causes such as epitaxial strain relaxation [9, 10]
or intrinsic such as surface tension [11] or curvature [12]
is thus apt to be a large influence on the function of
nano-ferroelectric memory elements (thin films, nanowires,
nanotubes, nanodots). Flexoelectricity also affects the
measurement of piezoelectric properties using scanning probe
techniques due to the highly inhomogeneous nature of the field
around the scanning tips [13, 14]. The flexoelectric effect
has been shown to enhance the piezoelectric properties of
nanowires [15], and is being explored with a view to make
‘piezoelectric’ sensors out of materials that are not themselves
piezoelectric [16, 17].

The typical way of measuring flexoelectric coefficients
consists in bending beam-shaped ceramics or crystals and
measuring the bending-induced polarization [3–6]. However,
it has been shown that bending experiments alone cannot
determine the full flexoelectric tensor, even for simple cubic
symmetries, and that at least one of the three flexoelectric
coefficients must be independently measured by a different
method [19]. It is therefore imperative to find new ways of
measuring flexoelectricity. One potential route to generate
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Figure 1. Supercell and strain profile used in the calculations. For BaTiO3, the unit cell contains only one formula unit (a), while for SrTiO3,
due to its antiferrodistortive transition at low temperature [18], the in-plane size of the unit cell is doubled (b). (c) and (d) Supercell in xz plan,
(e) cosine gradient strain in the supercell, (f) atom displacement in the supercell.

the flexoelectric tensor components may be the use of first-
principles calculations. Such an approach would have the
double benefit of being able to generate the independent
flexoelectric constant needed to characterize the full tensor,
and of providing an order-of-magnitude guidance for the
values that one should expect from the experiments; thus,
if the experimental values are wide off the mark, one can
raise ‘alarm flags’ and search for alternative explanations.
This is particularly pertinent in view of the large differences
found between the experimental values of flexoelectricity of
otherwise similar materials such as BaTiO3 [4] and SrTiO3 [6].
It is also pertinent because, as has been discussed, other effects
such as surface piezoelectricity and surface flexoelectricity
can mimic and are of the same order of magnitude as bulk
flexoelectricity [5, 8].

Theoretical methods for estimating flexoelectricity have
been reported very recently by Maranganti and Sharma [20]
and Naumov et al [21]. The former uses an approach
based on relating flexoelectric coefficients to phonons, as
originally proposed by Tagantsev [8], while Naumov et al
use ab initio methods to calculate a non-conventional
(quadratic) flexoelectric effect in periodically bent boron
nitride sheets. Here we use a direct ab initio approach that
is more direct than the former, and may be regarded as an
‘unclamped’ generalization of the latter, in order to calculate
the longitudinal flexoelectric coefficient, which is the hardest
one to measure experimentally [19] and yet the one that
determines the performance of the currently made flexoelectric
transducers [5, 16].

2. Calculation method

Flexoelectricity is described by a fourth rank tensor that
couples the polarization to a strain gradient:

Pi = fi jkl
∂εkl

∂x j
(1)

where Pi is the flexoelectrically induced polarization, ∂εkl/∂x j

is the strain gradient and fi jkl are the flexoelectric tensor
coefficients. In materials with simple cubic symmetries, such
as cubic perovskites, there are only three independent tensor
coefficients: longitudinal, shear and transverse [3, 6].

The main difficulty in using ab initio methods for
calculating flexoelectricity is the fact that such calculations
require the use of supercells with periodic boundary
conditions, whereas a strain gradient, by definition, results in
an inhomogeneous distribution of lattice parameters and thus a
breaking of the lattice periodicity. In order to circumvent this
problem, we construct here an ‘accordion’ supercell whereby
the strain gradient is itself periodic, thus allowing the recovery
of the periodic boundary condition. Specifically, the strain
profile along the z direction is chosen in the cosine form:

ε(z) = εmax cos
(

2π
z

h

)
(2)

where h is the height of the supercell, εmax is the max strain in
the supercell. This supercell is depicted in figure 1.

To calculate the flexoelectric effect, we chose the position
of h/4 of the supercell, where the strain gradient is maximum.
Both strain and strain gradient may in principle contribute
the local polarization via piezoelectricity and flexoelectricity,
respectively7. However, the piezoelectric polarization in
this unit cell is zero, because the average strain is zero by
construction (we also checked the volume of this unit cell
after relaxing and confirmed that there was no difference with
respect to the unstrained value). Thus, choosing the unit cell at
h/4 not only provides the maximum flexoelectricity, but also
eliminates the piezoelectric contributions.

7 BaTiO3 is ferroelectric and, although SrTiO3 is in principle paraelectric
(or, strictly speaking, a quantum paraelectric), strain can also induce a phase
transition to a ferroelectric state in which piezoelectricity would of course be
allowed.
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Figure 2. Strain gradient in relaxed BaTiO3 supercells of different vertical size under a strain gradient profile with maximum strain
εmax = 1%; (a) N = 6, (b) N = 14. The red curves (circles) are the average displacements of the A-site atoms (Ba) with the imposed strain;
the green and blue curves (stars and squares, respectively) are the displacements for O and Ti after relaxing the structure to its minimum
energy (but keeping the Ba positions fixed). The strain profiles of all the atoms converge as the supercell size increases.

Given a strain profile (equation (2)), the displacement of
each atom in the supercell is given by:

δ(z) =
∫ z

0
ε(ξ) dξ = εmaxh

2π
sin 2π

z

h
. (3)

After applying these displacements the system is relaxed,
otherwise only the electronic contribution to flexoelectricity
would be probed [21, 22]. Constrains must nevertheless be
kept on a subset of atoms to prevent their relaxing back to
their equilibrium positions, i.e., to a state with no gradient.
In order to impose the strain gradient, we fix the positions
of the A-site atoms (Ba or Sr), because they are the ones that
participate least in the polarization, while we let all the other
atoms relax to their equilibrium positions. The superlattice is
then relaxed until the maximum component of the force on
any unfixed atom is smaller than 10 meV Å

−1
. We then use

the Born effective charges to calculate the local polarization in
each unit cell:

Pα = 1

�

∑
κ,β

Zκ,αβδκ,β (4)

where Pα is the spontaneous polarization in the α direction, �

is the unit cell volume, Zκ is the Born effective charge for atom
κ in the bulk material and δκ,β is the displacement of atom κ

along the β direction relative to the centrosymmetric structure.
The flexoelectric coefficient is calculated dividing the

polarization obtained from equation (4) by the strain
gradient obtained from equation (2). While the present
construction allows in principle calculating the flexoelectric
tensor components f1333 and f2333, these are zero by symmetry
for both rhombohedral and tetragonal structures [23], so only
the longitudinal f3333 is analyzed here.

The calculations have been performed within density-
functional theory (DFT) and the generalized gradient
approximation (GGA) [24] for BaTiO3 and the local density
approximation (LDA) [25] for SrTiO3. We used the SIESTA
method [26] based on finite-range numerical atomic orbitals,
using a double-ζ polarized basis set [27]. Norm-conserving
pseudopotentials were used to reproduce the effect of core
electrons, including into the valence the semicore: 3s and 3p
shells for Ti, 4s and 4p for Sr, 5s and 5p for Ba. The integrals
in reciprocal space were well converged with a k-mesh of 12
Ang cutoff, while the integrals in real space used a r-mesh of
350 Ryd cutoff.

3. Results

The performance test for rhombohedral BaTiO3 has been
presented in a previous work [28]. In addition, the spontaneous
polarization is 0.434 × 10−9 C m−1 along [111], very close
to previous theoretical results 0.44 × 10−9 C m−1 [29] (the
experimental result is 0.35 × 10−9 C m−1 [30], although this
value is very dependent on sample quality and is presently
considered less reliable for the purpose of comparison). The
obtained lattice parameter for SrTiO3 is a = 3.865 Å and
c/a = 1.004, while the experimental data [31] is a =
3.898 Å and c/a = 1.000 56 at 65 K, and the rotational
angle of the octahedral around the c axis is 4◦, while it is 2.1◦
experimentally at 4.2 K [32].

After relaxing the constrained structure, the unfixed atom
positions are checked to see whether the gradient strain exists
still in the relaxed supercell. Figure 2 shows a typical
calculation (in this case for BaTiO3 with εmax = 1%), showing
that the A-site displacement profile is indeed transferred
into the unconstrained atoms, which means the cosine strain
gradient still exists after relaxing. However, figure 2(a) also
shows that the gradient of the relaxed atoms is considerably
smaller than that of the fixed A-site atoms (Ba or Sr). This has a
considerable impact on the calculated value of the flexoelectric
coefficient: since this is calculated dividing the polarization
over the gradient, a smaller gradient results in a bigger apparent
flexoelectric coefficient.

The discrepancy between the gradient values of the fixed
and relaxed atoms is largely an artifact caused by the small size
of the supercell. Figure 2(b) shows that, for large supercells,
the strain gradients of the constrained A-site atoms and the
relaxed B-site atoms are almost the same. Indirectly, this
also suggests that the choice of atoms to constrain in order
to impose the strain gradient, which we decided to be the A-
site atoms to be on the safe side as they play little role in the
ferroelectric polarization, is in fact largely irrelevant. Figure 3
shows the flexoelectric coefficients for rhombohedral BaTiO3

with different number of unit cells in the supercell. It can be
seen that the calculated flexoelectric coefficient is indeed larger
when using the relaxed atoms than when using the fixed ones,
but also that the difference between the two values decreases
with increasing the height of supercell, suggesting that such
difference was the artifact of an insufficiently big supercell.
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Figure 3. Longitudinal flexoelectric coefficient f3333 of rhombohedral BaTiO3 for different supercell sizes (N = 6, 10, 14) under various
strain gradients (εmax = 0.5%, 1.0%, 1.5%, 2.0%). In each panel, the black line (up) is for the applied strain, the red line (down) is for the
‘relaxed strain’ (see text). The two values converge as the supercell size is increased.

The strain gradients of the fixed and relaxed atoms thus
converge, and an extrapolation of the flexoelectric coefficients
allows estimating f3333 ∼ −0.37 ± 0.03 nC m−1 for BaTiO3

and f3333 ∼ −1.38 ± 0.65 nC m−1 for SrTiO3.

4. Discussion

The flexoelectric coefficients calculated here are all in the
order of nC m−1, which is consistent with the theoretical
estimation for a simple dielectric [2] and also with recent
measurements in SrTiO3 single crystals and ceramics [6, 33].
These values are also on the same order of magnitude as
the effective Hamiltonian calculations of Maranganti and
Sharma [20]. At first sight, then, the direct ab initio approach
appears capable of providing reliable estimates of flexoelectric
coefficients of SrTiO3, but of course the agreement may
be fortuitous, particularly since our calculations are for
SrTiO3 at 0 K, whereas the experimental measurements and
effective Hamiltonian calculations are for SrTiO3 at room
temperature. This is particularly important in view of the large
difference between the experimental values of the dielectric
constant of SrTiO3 at 0 K (relative permittivity around 30 000)
and at room temperature (relative permittivity around 300):
if flexoelectricity scales with permittivity, one would also
expect the flexoelectric coefficient at 0 K to be 100 times
bigger than at room temperature. On the other hand, the
ab initio relative dielectric constant of SrTiO3 at 0 K is not
as high as the experimental one, because it leaves out the
quantum paraelectric oscillations; in fact, the ab initio relative
permittivity is only 490 [34] which is quite close to the room
temperature value of 300, and thus the comparison between the
flexoelectric coefficients is legitimate.

The analysis of the results for BaTiO3 is more
complicated. On one hand, the calculated flexoelectric

coefficients of BaTiO3 agree in magnitude with the calculations
of Maranganti and Sharma [20], and are comparable also
to those measured for SrTiO3. However, the longitudinal
flexoelectricity of BaTiO3 has not yet been directly measured,
so direct comparison with experiment is impossible for this
material. Nevertheless, the transverse flexoelectric coefficient
of BaTiO3 has been measured, and is reported to be of the order
of several μC m−1 [4], which is several orders of magnitude
bigger than our theoretical estimate for the longitudinal one.
Such difference clearly demands further discussion.

We begin with the noteworthy discrepancy between
the experimental values for BaTiO3 and those of other
materials. The experimental flexoelectricity of BaTiO3 is much
higher than that of SrTiO3, but also than that of lead-based
ferroelectrics [5, 13]. Of course, such differences may be
intrinsic, and there is no reason to expect different materials
to have the same flexoelectric behavior. In this context, it is
worth pointing out that the response of BaTiO3 to uniaxial
stress is different from that of SrTiO3. At modest temperatures
SrTiO3 can be driven from its cubic structure to tetragonal D4h

or rhombohedral D3d by small uniaxial stresses along [111] or
[001]. Neither of these phases is polar or ferroelectric [35, 36].
By comparison, uniaxial pressure along [001] drives BaTiO3

from cubic to C4v tetragonal ferroelectric [37]. Therefore,
uniaxial stress applied to barium titanate generally gives a
polar distortion, whereas in strontium titanate it drives cell-
doubling distortions that are non-polar. Since flexoelectric
measurements are in essence uniaxial stress experiments—as
are, incidentally, our calculations—the different response to
uniaxial strain gradients may be consistent with the different
response to uniaxial stresses.

Moreover, the differences between the flexoelectricity of
BaTiO3 and SrTiO3 are not as large as they appear at first
sight. The flexoelectric coefficient is very anisotropic and the

4
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transverse flexoelectric coefficient can be much larger than the
longitudinal one. Experimental measurements for SrTiO3, for
example, indicate that the transverse flexoelectric coefficient
is at least an order of magnitude larger than the longitudinal
one [19], and calculations for BaTiO3 also estimate that the
transverse flexoelectric coefficient of BaTiO3 is nearly 40
times bigger than the longitudinal one [20]. Furthermore,
our flexoelectric coefficients are calculated at 0 K, where
the permittivity of BaTiO3 is lower. The relative dielectric
constant of BaTiO3 at low temperatures is of the order of
150–200 [38], while at temperatures near the Curie point it
is closer to 30 000 [39]. This represents another factor of
100–200 difference, meaning that our calculated longitudinal
flexoelectric coefficient, once scaled by the permittivity and the
anisotropy, is expected to be of the order of f3333 ∼ 2 μC m−1

near the Curie temperature. This still falls short, albeit only by
one order of magnitude, of the nearly 50 μC m−1 reported by
Cross for ceramics, the 25 μC m−1 measured by ourselves in
single crystals, and the 9 μC m−1 reported by Ma [13].

A further possible cause for the small remaining
discrepancy may be crystal symmetry: BTO is rhombohedral at
0 K, but tetragonal and cubic below and above Tc, respectively.
Experimentally, the value of the flexoelectric coefficient
normalized by the permittivity is known to decrease by a
factor of three at the tetragonal–orthorhombic transition [4],
and if there were another decrease at the orthorhombic–
rhombohedral transition, this would bring the theoretical and
measured values completely in line. Testing such hypothesis
will require calculating flexoelectricity for symmetries other
than the equilibrium one (rhombohedral), or else measuring
flexoelectricity in the rhombohedral phase.

On the other hand, it is also possible that the discrepancy
is due to the experimental measurements having contributions
beyond intrinsic flexoelectricity. One possible extrinsic
contribution may arise from piezoelectricity in small polar
regions that persist above Tc: in BaTiO3, birefringence
experiments have shown that such polar regions can indeed
persist far above Tc [40, 41]. Another potential contributor
are the surfaces of BaTiO3, which are thought to be polar
even in the paraelectric phase [42]. The surface of BaTiO3

has been a subject of intense theoretical and experimental
study [43–49], but there is no consensus yet as to how thick
the skin layer is. If, as some studies suggest, the surface layer
were very thin, the gradients would be very pronounced and
surface flexoelectricity could also be an important factor. Also,
surface strain gradients can be exacerbated by mechanical
polishing and may be detected unambiguously via selection
rule violations in infrared and Raman spectroscopy [50];
it is worth investigating whether this happens in BaTiO3.
Thickness-dependent flexoelectricity measurements might also
help clarify the role of surfaces.

5. Conclusions

We have proposed here a method for calculating the
longitudinal flexoelectric coefficient from first principles.
Comparison with SrTiO3, the only material for which the
longitudinal flexoelectric coefficient has been measured, shows

good agreement, suggesting that the method is robust. Direct
comparison with BaTiO3 is not possible because only the
transverse flexoelectric coefficient has been quoted for this
material, but the results nevertheless suggest that there may
be an order of magnitude discrepancy between theoretically
expected values and the directly measured ones. This calls
for two actions: (i) the ab initio method proposed here should
be modified in order to allow the calculation of transverse
flexoelectric coefficients in the cubic phase of BaTiO3 and
allow direct comparison with experiments, and (ii) thickness-
dependent measurements of flexoelectricity will be performed
in single crystals in order to establish whether or not there
are extrinsic contributions from the surfaces to the apparent
flexoelectricity of this material.
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